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ABSTRACT

Background. Cultivars of bahiagrass (Paspalum notatum Fliggé) are widely used for
pasture in the Southeastern USA. Soil microbial communities are unexplored in
bahiagrass and they may be cultivar-dependent, as previously proven for other grass
species. Understanding the influence of cultivar selection on soil microbial communities
is crucial as microbiome taxa have repeatedly been shown to be directly linked to plant
performance.

Objectives. This study aimed to determine whether different bahiagrass cultivars
interactively influence soil bacterial and fungal communities.

Methods. Six bahiagrass cultivars (‘Argentine’, ‘Pensacola’, ‘Sand Mountain’, ‘Tifton
9’, “TifQuik’, and ‘UF-Riata’) were grown in a randomized complete block design with
four replicate plots of 4.6 x 1.8 m per cultivar in a Rhodic Kandiudults soil in Northwest
Florida, USA. Three soil subsamples per replicate plot were randomly collected. Soil
DNA was extracted and bacterial 16S ribosomal RNA and fungal ribosomal internal
transcribed spacer 1 genes were amplified and sequenced with one Illumina Miseq
Nano.

Results. The soil bacterial and fungal community across bahiagrass cultivars showed
similarities with communities recovered from other grassland ecosystems. Few dif-
ferences in community composition and diversity of soil bacteria among cultivars
were detected; none were detected for soil fungi. The relative abundance of sequences
assigned to nitrite-oxidizing Nitrospira was greater under ‘Sand Mountain’ than ‘UF-
Riata’. Indicator species analysis revealed that several bacterial and fungal indicators
associated with either a single cultivar or a combination of cultivars are likely to be
plant pathogens or antagonists.

Conclusions. Our results suggest a low impact of plant cultivar choice on the soil
bacterial community composition, whereas the soil fungal community was unaffected.
Shifts in the relative abundance of Nitrospira members in response to cultivar choice
may have implications for soil N dynamics. The cultivars associated with presumptive
plant pathogens or antagonists indicates that the ability of bahiagrass to control plant
pathogens may be cultivar-dependent, however, physiological studies on plant-microbe
interactions are required to confirm this presumption. We therefore suggest that future
studies should explore the potential of different bahiagrass cultivars on plant pathogen
control, particularly in sod-based crop rotation.
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INTRODUCTION

Bahiagrass (Paspalum notatum Fliiggé), native to South America (Burton, 1967), is a
widespread, warm-season perennial, commonly used as pasture in the Southeastern USA.
Following its introduction into many countries worldwide, the sod-forming grass is also
common in Australia and Japan (Hirata, 2000; Wilson, 1987) and has become naturalized
in the USA. It was first introduced into the USA in 1913 (Scort, 1920) and is extensively
cultivated on more than 1.5 million hectares in southeast USA, making it the most common
and widely used perennial grass across southern states (Newrman, Vendramini ¢ Blount,
2011). Bahiagrass grows well in sandy, low fertile soils, requires low inputs, and it exhibits
tolerance towards short-term drought and flooding events as well as continuous cattle
stocking (Gates, Quarin & Pedreira, 2004; Newman, Vendramini ¢ Blount, 2011). Low
winter temperatures and aridity limit its geographic distribution (Gates, Quarin & Pedreira,
2004). ‘Pensacola’, ‘Tifton 9°, ‘“TifQuik’, and ‘UF-Riata’ are among the most popular
cultivars in the Southeastern USA. They exhibit differences in growth habit, cold tolerance,
seasonal and total yield, seed production and grazing tolerance (Newman, Vendramini ¢»
Blount, 2011). Cultivars also can differ in their resistance to diseases (Harncock et al., 2010
Trenholm, Cisar ¢~ Unruh, 2011). Further, cultivar-specific nutrient use efficiencies may
reduce nitrate leaching and fertilizer input costs (Wiesler ¢» Horst, 1993; Liu, Hull ¢ Duff,
1997; Baligar, Fageria ¢» He, 2001). Therefore, cultivar choice is an important factor for the
maintenance of soil health.

It is well established that plant community composition and diversity influences the
belowground microbial community and vice-versa (Berg, 2009; Berg ¢ Smalla, 2009;
Van der Heijden et al., 1998; Kourtev, Ehrenfeld ¢ Higgblom, 2003; Kowalchuk et al., 2002;
Lange et al., 2015; Reynolds et al., 2003; Wardle et al., 2004; Zak et al., 2003). Beneficial
plant-microbe interactions, such as mycorrhizal symbiosis or root colonization of plant
growth-promoting rhizobacteria (PGPR) are known to enhance host plant growth
(Artursson, Finlay & Jansson, 20065 Lugtenberg & Kamilova, 2009), pathogen resistance
(Azcon-Aguilar & Barea, 1997; Harrier & Watson, 2004; Van Loon, Bakker & Pieterse, 1998;
Mabherali & Klironomos, 2007), and abiotic stress tolerance (Evelin, Kapoor ¢ Giri, 2009;
Vurukonda et al., 2016; Wu, Zou & Xia, 2006; Yang, Kloepper ¢ Ryu, 2009). Whereby
belowground, mycorrhiza symbionts depend on organic carbon supply via host roots
(Smith & Read, 2008) and PGPR can be attracted via root exudates (Badri ¢ Jorge, 2009;
Somers, Vanderleyden ¢ Srinivasan, 2004), creating a complex plant-microbe-soil feedback
system (Miki et al., 2010). Emerging evidence shows that plant cultivars can be one
of the factors affecting the composition of the rhizosphere microbiome (Briones et al.,
2002; Dalmastri et al., 1999; Diab El Arab, Vilich & Sikora, 2001; Germida ¢ Siciliano, 2001;
Schweitzer et al., 2008). Different grass species have been shown to be capable of altering
soil microbial communities, mainly due to differences in nutrient acquisition strategies
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and rhizodeposits (Bardgett et al., 1999; Grayston et al., 1998; Vandenkoornhuyse et al.,
2003). A few studies reported that rhizosphere bacterial populations vary across different
grass cultivars (Miller, Henken ¢ Veen, 1989; Rodrigues et al., 2016), whereas the potential
effect of different grass cultivars on the composition of fungal communities remains
widely unexplored. Identifying alterations of the soil microbiome by cultivar choice is of
importance as specific microorganisms can have specific lifestyles, including mutualism,
parasitism or involvement in diverse saprotrophic activities. These processes are directly
linked to the fitness of the host plants and soil fertility.

Alterations of belowground microbial communities can have significant impact on plant
performance. In several managed grassland ecosystems, Proteobacteria, Acidobacteria,
Actinobacteria, and Bacteroidetes have been found to be the most abundant soil bacterial
phyla (Cao et al., 2017; Kaiser et al., 2016; Nacke et al., 2011; Rodrigues et al., 2016; Zhou
et al., 2003). Members of these phyla contribute to essential soil functions, such as
biological nitrogen fixation (BNF) (Baldani et al., 1997). Further, beneficial rhizobacteria
can stimulate plant growth via the production of plant hormones, suppress soil-borne plant
pathogens, supply nutrients to plants and improve soil structure (Berg, 2009; Hayat et al.,
2010; Van der Heijden, Bardgett ¢ Van Straalen, 2008; Weller et al., 2002). Hence, PGPR
such as Arthrobacter, Azotobacter, Burkholderia, and Pseudomonas species have been used
to enhance agricultural production for decades (Bhattacharyya ¢ Jha, 2012; Vessey, 2003).
Besides bacteria, symbiotic associations with mycorrhizal fungi can improve plant resistance
to pathogens (Selosse, Baudoin, & Vandenkoornhuyse, 2004; Wehner et al., 2010) as well as
improve plant nutrition, particularly by enhancing plant phosphorus (P) acquisition (Li
et al., 2006; Smith, Mette Gronlund & Andrew Smith, 2011; Smith, Smith ¢ Jakobsen, 2003).
Many arbuscular mycorrhizal (AM) fungi communities under grass have been shown to
be dominated by the families Glomeraceae, Gigasporaceae and Acaulosporaceae (Hiiesalu
et al., 2014; Oehl et al., 2005; Xu et al., 2017). In some grassland soils, the genus Glomus
was identified as the most abundant AM fungi (Gai ef al., 2009; Wang et al., 2003). Glomus
is the largest genus of AM fungi described (Schwarzott, Walker ¢» Schiissler, 2001). In
association with peanut (Arachis hypogaea) and lettuce (Lactuca sativa) plants, Glomus
spp. were demonstrated to promote plant growth, P and micronutrient uptake (Krishna &
Bagyaraj, 1984) and increased drought tolerance (Ruiz-Lozano, Azcon & Gomez, 1995).

Using next generation amplicon sequencing, the aim of this study was to determine
whether different bahiagrass cultivars interactively influence the belowground microbial
community composition and diversity. To achieve this aim, we recovered bacterial 16S
ribosomal RNA (16S rRNA) and fungal ribosomal internal transcribed spacer (ITS)

1 gene sequences from soil samples of six different bahiagrass cultivars grown in a
randomized complete-block design. We hypothesized that bahiagrass cultivar choice affects
the microbial community composition and diversity of both, soil bacteria and fungi. Given
the significant role of soil microorganisms in soil nutrient cycling and plant nutrition, our
research outcomes can provide insight into bahiagrass-associated soil bacterial and fungal
communities, as well as the plant-microbe-soil feedback system among grass cultivars and
better our understanding of the grassland ecosystem.
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MATERIAL AND METHODS

Study site

The experimental site (30.8733 N, 85.1894 W, 33 m above sea level) is located in Northwest
Florida (Jackson County), USA. The soil was characterized as a fine-loamy, kaolinitic,
thermic Rhodic Kandiudults of the Orangeburg series (National Cooperative Soil Survey
U.S.A., 2019). In June 2005, six different bahiagrass cultivars (‘Argentine’, ‘Pensacola’,
‘Sand Mountain’, ‘Tifton 9, ‘TifQuik’, and ‘UF-Riata’) were established, in a randomized
complete-block design, with four replicate plots of 4.6 x 1.8 m per cultivar. All plots were
treated the same for harvesting procedures and fertilization rates. Bahiagrass cultivars were
harvested five times to a 5-cm stubble height during the growing season (May to October),
which was conducted at five-weeks intervals. The plots were grown under low-fertilizer
inputs and received no nitrogen (N) fertilization for the duration of this study. From May
to August 2015, the plots received 7.3 kg P ha™!, 197.1 kg K ha™!, 67.3 kg Mg ha™!, and
141.2 kg S ha™!. From April to August 2016, the plots received 29.4 kg P ha™?, 239.9 kg K
ha=!, 33.6 kg Mg ha™!, and 70.6 kg S ha™!.

Soil characteristics were assessed prior to the planting in 2005. Five soil cores (Q:
2.54 cm) of 0-15 cm depth were taken within each replicate plot to receive a total of 30
soil subsamples per block. One composite soil sample form each of the four blocks was
analysed for soil pH (1:2, soil:water), Mehlich-1 extractable nutrients and calculated cation
exchange capacity were determined by a commercial lab (Waters Agricultural Laboratories,
Inc., Camilla, GA, USA). Soil properties are reported in Table S1.

Soil sampling and soil DNA extraction

Three randomly selected soil samples per replicate plot, resulting in twelve soil samples per
cultivar, were taken in late April 2017 (mean temperature in April 2017: 22 °C [6-33 °C],
sum of precipitation in April 2017: 51.8 mm [0.0-25.9 mm day~']). Soil cores (@: 2 cm)
of 10 cm depth were stored at 4 °C during transportation to the laboratory (one hour).
Upon arrival in the laboratory, soil samples were homogenized and sieved at < 2 mm.
Aliquots of each soil sample were transferred to 2 ml Eppendorf tubes, frozen in liquid N,
for 3 min and subsequently stored at —80 °C until DNA extraction. Total soil DNA was
extracted using Qiagen’s DNeasy® PowerSoil® Kit (Qiagen Inc., CA, USA) following
the manufacturer’s instructions. Quality and quantity of the extracts were assessed using
a spectrophotometer (NanoDrop (ND-ONE-W), ThermoFisher Scientific, Waltham, MA,
USA).

Amplicon sequencing

To assess community compositions of soil bacteria and fungi, three-step PCRs
targeting the bacterial V4 region of the 16S rRNA and fungal ITS1 genes were
modified according to Chen et al. (2018). Briefly, bacterial 16S rRNA and fungal ITS1
genes were amplified for 10 PCR cycles (first-step PCR) using primer pair 515F (5'-
GTGCCAGCMGCCGCGGTAA-3")/806R (5-GACTACHVGGGTWTCTAAT-3') and
ITS1F (5-CTTGGTCATTTAGAGGAAGTAA-3")/ITS2 (5'-GCTGCGTTCTTCATCGAT
GC-3'), respectively. Another 10 PCR cycles (2nd-step PCR) were used to add six
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frameshifting primers as well as the sequencing primer. The frameshifting primers consisted
of the respective primer pair used in the first-step PCR with frameshifting nucleotides to
create sequence diversity in order to overcome the sequence bias within the initial bases
and, thus, increase data yield (Lundberg et al., 2013). Finally, error tolerant barcodes
were added running additional 10 PCR cycles (3rd-step PCR). Prior to pooling, 3rd-step
PCR products were individually purified using bead-cleanup (AMPure XP, Beckman
Instruments, Brea, CA, USA). Quality and quantity of the PCR products were assessed
using a spectrophotometer (NanoDrop™). In addition, PCR products were screened
on 1.7% (w/v) agarose gels to verify product size and quantity. The 144 barcoded PCR
products were pooled and sequenced with one Illumina (Illumina Inc., San Diego, CA,
USA) Miseq Nano (v2 250 bp, 500 Mb sequencing capacity) at Duke Center for Genomic
and Computational Biology (GCB, Durham, NC, USA). Amplicon sequencing data have
been deposited at NCBI Short Read Archive (SRP143584).

Amplicon sequencing data analysis

Sequence quality of obtained demultiplexed forward and reverse sequences was assessed
by FastQC (Andrews, 2010). Forward primers were removed using cutadapt version
1.15 (Martin, 2011). Reverse sequences were not used due to low quality and merging
with forward reads (Nguyen et al., 2015). The datasets were imported in QIIME2 verison
2018.11. Data were quality-filtered and chimeric sequences were removed employing
DADA2 (Callahan et al., 2016). Forward reads truncated to 200 bp were processed for
both bacterial and fungal datasets. The obtained 189,521 bacterial and 138,263 fungal
quality-filtered reads were de novo assembled at 97% genetic identity using VSEARCH
(Rognes et al., 2016). For taxonomic assignment, sequences were aligned to the Silva
SSURef 132 NR (Quast et al., 2013) and UNITE version 7.2 database (Koljalg et al., 2013)
using BLAST+ (Camacho et al., 2009) in QIIME2 for 16S and ITSI, respectively. Singletons
and non-bacterial and non-fungal reads were removed from the obtained operational
taxonomic unit (OTU) tables. The OTU tables were rarefied to 1,200 for bacterial 16S
rRNA and 600 randomly selected reads per sample for fungal ITS1 in QIIME2 (rarefaction
curves are presented in Fig. S1).

Statistical analyses

Shannon-Wiener and Simpson’s diversity indices, Chaol richness estimate, and Simpson’s
evenness of samples from rarefied OTU tables were calculated using the ‘diversity’-function
in the R package ‘vegan’ version 2.4-5 (Oksanen, 2017). Non-metric multidimensional
scaling (NMDS) based on Bray-Curtis dissimilarity matrices was conducted using the
‘metaMDS’-function in ‘vegan’. Significant differences in alpha diversity metrics (Shannon-
Wiener and Simpson’s diversity indices, Chaol richness estimate, and Simpson’s evenness)
were tested using Kruskal-Wallis test with multiple comparison extension (‘kruskalmc’-
function in the ‘pgirmess’ R package version 1.6.9 (Giraudoux et al., 2018). We further
tested for significant differences in the relative abundance of taxonomic groups at all
taxonomic levels (phylum to species) using one-way ANOVA with Tukey’s HSD test or
Kruskal-Wallis test with multiple comparison extension as described above. Indicator
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Figure 1 (A) Soil bacterial and (B) fungal community composition across plots of six different bahia-
grass (Paspalum notatum Fliiggé) cultivars (n = 72) in a Rhodic Kandiudults soil in Northwest Florida,
USA. Rare (<0.5% relative abundance) phyla and orders were grouped with unassigned taxa.

Full-size Gl DOI: 10.7717/peer;j.7014/fig-1

species of individual plant cultivars as well as a combination of cultivars were identified
using the ‘multipatt’-function using 999 permutations in the ‘indicspecies’ R package
version 1.7.6 (De Caceres, 2013).

Differences in community composition among cultivars were tested using permutational
multivariate analysis of variance (PERMANOVA) and complementary test for homogeneity
of dispersions (PERMDISP) using 9,999 permutations employing the ‘beta-group-
significance’-function in QIIME2 version 2018.11. Results for both PERMANOVA
and PERMDISP were corrected for multiple comparison using Benjamini—-Hochberg
correction. Complementary, we performed Analysis of similarities (ANOSIM) using 9,999
permutations using the same function as for PERMANOVA and PERMDISP, yielding
in similar results. Here, we report the results from PERMANOVA and PERMDISP. Test
results with p < 0.05 were considered statistically significant. All statistical analyses were
executed in R version 3.4.3 (R Core Team, 2017).

RESULTS

Microbial community composition across six bahiagrass cultivars
The most abundant soil bacterial phyla were Proteobacteria (28.6 & 8.5%), Acidobacteria
(26.4 £ 10.2%), Actinobacteria (14.9 + 3.3%), and Verrucomicrobia (11.8 & 9.0%)
(Fig. 1A). The Proteobacteria were divided into Alpha- (18.5 & 8.1%), Delta-(3.0 + 1.2%),
and Gammaproteobacteria (7.1 = 1.4%). Rhizobiales (12.9 &+ 7.9%), Chthoniobacterales
(8.2 & 8.9%), Acidobacterales (6.7 £ 4.3%), and ‘Subgroup 2’ (5.3 & 8.5%) were the
dominant bacterial orders in soil (Fig. 1A). Sequences that matched closest with Candidatus
Udaeobacter (8.2 £ 6.7%), Bradyrhizobium (4.7 £ 7.0%), and Candidatus Solibacter (2.7
=+ 1.6%) were the most abundant in occurrence bacterial genera across cultivars.
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Ascomycota (54.7 £ 13.8%), Glomeromycota (13.7 & 7.5%), Basidiomycota (10.4 &+
8.6%), and Rozellomycota (9.8 & 7.0%) were the most abundant fungal phyla (Fig. 1B). On
class level, the fungal communities were dominated by Sordariomycetes (28.9 £ 14.0%),
Glomeromycetes (11.7 £ 7.0%), Dothideomycetes (9.4 £ 9.2%), and Agaricomycetes (8.4
=+ 8.6%). The most dominant fungal orders were Hypocreales (11.2 & 9.0%), Sordariales
(10.5 & 7.0%), Glomerales (9.8 + 10.2%), and Pleosporales (6.0 &= 5.0%) (Fig. 1B).
Sequences that matched closest with Penicillium (1.9 &+ 1.9%), Fusarium (1.8 + 1.2%), and
Mortierella (1.4 = 1.7%) were the dominant fungal genera.

Soil microbial diversity under different bahiagrass cultivars

To understand whether bahiagrass cultivar is among the factors shaping the community
of soil microorganisms, the community composition and diversity of soil microorganisms
across different cultivars was compared. Differences in the soil bacterial community
composition between Argentine and Sand Mountain (p = 0.022) as well as Argentine and
TifQuik were detected (p = 0.022) (Table 52). Soil fungal community composition did not
differ among cultivars (Table S2), which is demonstrated by the clustering of the cultivars
in the NMDS (Fig. 2B).

The different cultivars did not differ in their bacterial and fungal diversity based on
the Shannon-Wiener diversity index; however, using Simpson’s diversity index, a greater
diversity of bacteria in soil of UF-Riata compared to TifQuik was observed (p = 0.015)
(Fig. 2C). No differences in bacterial and fungal richness were observed among cultivars,
and Simpson’s evenness revealed lower bacterial species evenness in soil under TifQuik
than Argentine (p =0.023), Pensacola (p =0.002), and UF-Riata (p < 0.001) (Fig. 2C).

Shifts of relative abundance and indicator species in response to
different bahiagrass cultivars

We detected only one relative abundance shift of the bacterial and none of the fungal
taxonomic groups among cultivars. The shift was found for the bacterial genus Nitrospira,
where Sand Mountain was showing greater relative abundance than UF-Riata (p = 0.049)
(Fig. 3A).

Out of 425 bacterial OTUs, there were 13 indicator species for individual cultivars as
well as a combination of cultivars from which the majority of indicators (8 out of 13)
were identified as Proteobacteria. Sand Mountain and TifQuik were the only individual
cultivars that harboured distinct indicator species from the other cultivars in this study.
The remaining indicators species were assigned to a combination of cultivars (Table S3).
An OTU that matched closest to Pajaroellobacter (Deltaproteobacteria) and one that
was assigned to Bauldia (Alphaproteobacteria) were associated with Sand Mountain
(p <0.048) (Table S3). For the cultivar TifQuik, an OTU of the order ‘54-9’ (Anaerolineae)
was identified as an indicator species (p = 0.019) (Table S3). Further, an OTU matched
closest to Haliangium (Deltaproteobacteria) was characterised as an indicator species for
Pensacola and Tifton 9 (p = 0.008) (Table S3). The presence of an unassigned member of
the family Nitrosomonadaceae (Gammaproteobacteria) was identified as an indicator for
all cultivars but Argentine (p = 0.017) (Table S3).
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Figure 2 Microbial community composition and diversity in soil of six different bahiagrass (Paspalum
notatum Fliiggé) cultivars (n = 12 for each cultivar) in a Rhodic Kandiudults soil in Northwest Florida,
USA. (A) Non-metric multidimensional scaling ordination (NMDS) of Bray-Curtis dissimilarity matri-
ces of the soil bacterial and (B) fungal community, and (C) diversity, richness, and evenness metrics of soil
bacterial and fungal communities. Black dots represent individual data points. Brackets indicate statisti-

cally significant differences among cultivars (Kruskal-Wallis test with multiple comparison extension at

*p < 0.05, **p < 0.01, and ***p < 0.001).

Full-size Gl DOI: 10.7717/peerj.7014/fig-2

Of a total of 180 fungal OTUs, six indicator species were detected (Table S4). One
OTU of the family Ceratobasidiaceae (Agaricomycetes) was characterized as an indicator
for Pensacola, Sand Mountain, and Tifton 9 (p = 0.016) (Table S4). Sand Mountain,
TifQuik, Tifton 9, and UF-Riata were characterized by a fungal OTU assigned to the family
Orbiliaceae (p = 0.040) (Table 54).

DISCUSSION

Soil bacterial communities across bahiagrass cultivars
The soil bacterial communities across managed bahiagrass cultivars exhibited parallels to

the communities of diverse grassland ecosystems at phylum and class level. For example,
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the top three dominant soil bacterial phyla across all bahiagrass plots (Proteobacteria,
Acidobacteria, and Actinobacteria) as well as the dominance of the Alpha-, Delta-, and
Gammaproteobacteria were also reported for managed grassland soils (Cao et al., 2017,
Nacke et al., 2011; Rodrigues et al., 2016; Zhou et al., 2003). Further, the greater relative
abundance of the phyla Acidobacteria and Actinobacteria agrees with other studies
investigating bacterial communities in grassland soils (Kaiser et al., 2016; Nacke et al.,
2011; Rodrigues et al., 2016; Will et al., 2010).

The most abundant bacterial genus that was taxonomically assigned across cultivars of
bahiagrass, Candidatus Udaeobacter, is ubiquitous in soils and frequently recovered using
16S rRNA gene sequencing approaches. Recently, Brewer et al. (2016) reported that an
affiliate of this genus, Candidatus Udaeobacter copiosus, can account for almost one third
of the soil bacterial taxa in grasslands. Further, Candidatus Udaeobacter copiosus has shown
dominance in soil samples even across geographic distance (Brewer et al., 2016). Despite
its great relative abundance in soils worldwide, the ecology and physiology of members of
the genus Candidatus Udaeobacter largely remain unknown.

Our second most abundant soil bacterial genus (Bradyrhizobium) that matched our
sequences was previously found as one of the most prominent genera in other grassland
ecosystems (Brewer et al., 2016; McCaig, Glover & Prosser, 1999; Thomson et al., 2010).
Many Bradyrhizobium species have the ability to denitrify (Bedmar, Robles ¢ Delgado,
2005; Ferndndez et al., 2008; Kaneko et al., 2002; Mesa, Gottfert ¢ Bedmar, 2001) and
are proposed to play a key role in denitrification (Jones et al., 2016). Moreover, several
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Bradyrhizobium affiliates are capable of fixing atmospheric N, and are considered to
contribute significantly to BNF in soils (Zahran, 1999). The abundance of Bradyrhizobium,
however, cannot serve as an indicator of their N, fixation rates as shown in a recent study
on native switchgrass (Panicum virgatum) (Bahulikar et al., 2014). Thus, although a genetic
potential for denitrification and BNF is given by our second most dominant soil bacterial
genus, its contribution to N cycling in soil of bahiagrass remains unclear and requires
further investigations on functional level.

In line with the other dominant genera that we taxonomically assigned, the genus
Candidatus Solibacter, our third most abundant genus, has been reported as one of the top
genera recovered from grassland soils (Kaiser et al., 2016). Even for the most frequently
investigated affiliate of the genus, Candidatus Solibacter usitatus, detailed ecological and
physiological information is still lacking (Dedysh et al., 2017; Ward et al., 2009).

Soil fungal communities across bahiagrass cultivars

In line with previous results from grassland ecosystems (Barnard, Osborne ¢ Firestone,
2013; Chen et al., 2017:201; Porras-Alfaro & Bayman, 2011; Tedersoo et al., 2014; Yang et al.,
2017), sequences assigned to Ascomycota numerically dominated over all other fungal phyla
across cultivars. The dominant fungal classes in our bahiagrass plots (Sordariomycetes,
Glomeromycetes, Dothideomycetes, and Agaricomycetes) were similar to those found in
Californian grassland soils (Barnard, Osborne ¢ Firestone, 2013).

Many species of our most abundant taxonomically assigned fungal genus across cultivars,
Penicillium, have been identified as plant growth-promoting fungi for several plants
including grasses (Khan et al., 2008; Wakelin et al., 2004; Whitelaw, Harden & Bender,
1997). A well reported mechanism of plant growth promotion by Penicillium spp. is their
ability to solubilize P for plant nutrition in soil (Asea, Kucey & Stewart, 1988; Kucey, 1987,
Wakelin et al., 2004). We found that the potentially phytopathogenic genus Fusarium
was assigned as the second most abundant genus across all plots. Fusarium spp. are
cosmopolitans that are present in all types of ecosystems (Summerell et al., 2010) and were
reported to be one of the most abundant soil fungal taxa in some grassland ecosystems
(Khidir et al., 2010; Orgiazzi et al., 2012; Warcup, 1951; Yang et al., 2017). Fusarium diseases
are, except under rare conditions, considered as not serious for bahiagrass under field
conditions (Singh, 2009). Besides Penicillium and Fusarium, sequences assigned to the
genus Mortierella were dominant and have also been shown to be highly abundant in
grassland soils (Warcup, 1951; Yang et al., 2017). Members of the genus Mortierella are
a diverse, ubiquitous and abundant group of filamentous fungi in soils that exhibit a
saprophytic lifestyle (Uehling et al., 2017; Wagner et al., 2013). Additionally, some species
were recently described as root endophytes (Bonito et al., 2016; Johnson et al., 2019). There
is evidence that several Mortierella species can promote the growth of certain plant species
whereby for some species, similar to Penicillium, one of the identified mechanisms for
plant growth promotion is their ability to solubilize P for plant uptake (Osorio ¢ Habte,
2001; Osorio ¢ Habte, 2013; Osorio & Habte, 2014; Sharma et al., 2013; Zhang et al., 2011).
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Soil bacteria and fungi under different bahiagrass cultivars

Numerous studies have shown that plant cultivars or varieties can affect the composition of
the associated soil rhizosphere bacterial and fungal communities (Bell et al., 2014; Briones
et al., 2002; Dalmastri et al., 1999; Diab El Arab, Vilich ¢ Sikora, 2001; Germida ¢ Siciliano,
20015 Jie, Liu & Cai, 2013; Schweitzer et al., 2008). Different grass cultivars can exhibit
dissimilar nutrient requirements (Ashworth et al., 2017; Oliveira et al., 2017) as well as
root exudate quantities and qualities (Christiansen-Weniger, Groneman ¢ Van Veen, 1992;
Guo, McCulley & McNear, 2015), which are likely to affect populations of root-associated
microorganisms. The bahiagrass cultivars differed in productivity, stand establishment
and growth rate, and temperature sensitivity (Chambliss ¢ Sollenberger, 1991; Newman,
Vendramini ¢ Blount, 2011). Thus, considering the holistic approach of plant-microbe-
soil as a feedback system (Miki et al., 2010), it is likely that different bahiagrass cultivars
affect the rhizosphere microbiome and alter plant-microbe-soil traits. In our study,
differences in microbial community composition in response to cultivar choice were
only detected for bacterial communities. It should be noted that our soil samples were a
mixture of rhizosphere and bulk soil, which may have contributed to the low number of
detected differences in the composition and diversity of soil microbial communities among
cultivars. Soil microbial community functional diversification is thought to be crucial for
soil microbiome stability and resilience (Griffiths ¢ Philippot, 2013; Shade et al., 2012).
Therefore, the comparingly low bacterial alpha diversity (Simpson’s index) and evenness
(Simpson’s evenness) in TifQuik soil (Fig. 2C), may signal a decreased potential of the soil
bacterial community to counter perturbations.

Differences in community composition among cultivars were limited to bacterial
communities among Argentine and Sand Mountain and Argentine and TifQuik. Cultivar
choice further affected relative abundance of the cosmopolitan genus Nitrospira (Fig. 3).
Nitrospira affiliates are present in a wide range of habitats, including deep sea sediments
(Nunoura et al., 2015), cold deserts (Gupta et al., 2015), and tropical sponges (Sharp et al.,
2007). Traditionally, members of Nitrospira are described as nitrite-oxidizing bacteria,
performing the second oxidation-step in nitrification. Recently, however, Daims et al.
(2015) reported complete nitrification by a member of the genus Nitrospira, which
completely changes our understanding of ammonia-oxidizing and nitrite-oxidizing
bacteria. Apart from their place in the nitrification pathway, the increased relative
abundance of Nitrospira under Sand Mountain compared to UF-Riata (Fig. 3) may
indicate a greater potential for nitrite oxidation activity in soil of Sand Mountain. In 2014
and 2015, Dubeux et al. (2017) determined the bahiagrass yield and crude protein content
of all six bahiagrass cultivars at our experimental site. The yield of Sand Mountain was
among the greatest of all six cultivars and out-yielded Argentine. Although no statistically
significant differences in crude protein content were detected among cultivars, it is worth
mentioning that Sand Mountain showed the greatest mean crude protein content (Dubetix
etal., 2017).

Wedin & Tilman (1990) reported a close relationship between soil-N cycling and
the choice of perennial grass species. Several studies showed that certain grass species
can suppress nitrification (Ishikawa et al., 2003; Lata et al., 2004; O’Sullivan et al., 2016;
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Subbarao et al., 2009). In contrast, Hawkes et al. (2005) demonstrated that invasive grass
species can increase nitrification rates and the abundance of ammonia-oxidizing bacteria
in soil of Californian grassland. Studies that explored the role of grass root exudates on
nitrification mainly focused on nitrification inhibition as a strategy for reduced nitrate
leaching from soil. Numerous studies reported nitrification inhibitors in root exudates
of grasses (Subbarao et al., 2006; Subbarao et al., 2009; Sun et al., 2016; Zakir et al., 2008).
The composition of grass root-exudates has been shown to be affect by both cultivar and
fungal endophytes (Guo, McCulley ¢ McNear, 2015). It remains unclear whether certain
bahiagrass cultivars affect nitrification rates. However, we speculate that some cultivars
may promote or less supress nitrifying soil microorganisms to increase N availability,
particularly in the absence of N fertilization like at our experimental site.

Sand Mountain further harboured two indicator species, one OTU anchored in the genus
Pajaroellobacter and the other in the genus Bauldia (Table S3). The genus Pajaroellobacter
is not well characterized, except for Pajaroellobacter abortibovis, the etiologic agent of
epizootic bovine abortion in cattle, which is a vector transmitted disease by the tick
Ornithodoros coriaceus (Brooks et al., 2016; King et al., 2005). Likewise, the genus Bauldia is
largely unexplored.

Sequences assigned to the genus Haliangium was found characteristic for the cultivars
Pensacola and Tifton 9 (Table S3). Haliangium spp. have been recovered from soil samples
before, even with great geographic distance among samples (Ding et al., 2014; Fulthorpe
et al., 2008). Some members of Haliangium have the capability to produce the antifungal
metabolite haliangicin which can supress the growth of a broad range of fungi (Fudou,
lizuka & Yamanaka, 2001; Kundim et al., 2003). There is no application of Haliangium in
plant protection yet, however, the potential of myxobacteria to produce unique secondary
metabolites has been recognized (Reichenbach ¢» Hofle, 1993; Wenzel & Miiller, 2009).

For all cultivars but Argentine, an OTU of the abundant bacterial family
Nitrosomonadaceae was assigned as an indicator species (Table S1). They are characterized
as lithoautotrophic of ammonia-oxidizing bacteria and harbour the well-characterized
genera Nitrosomonas and Nitrosospira. In view if this result and the relative abundances
of Nitrospira, we suggest that the dynamics of soil-N cycling under different bahiagrass
cultivars should be further investigated.

Half of the cultivars (Pensacola, Sand Mountain, and Tifton 9) harboured a sequence
assigned to a member of the Ceratobasidiaceae as an indicator species (Table S4). Genera
of this fungal family include economically relevant phytopathogens like Rhizoctonia, which
cause, for example, ‘brown patch’ disease on turfgrasses (Oniki et al., 1986). In rotation
systems, bahiagrass has shown to reduce Rhizoctonia population densities in soil and
associated diseases on peanuts (Johnson et al., 1999), and vegetables (cucumber (Cucumis
sativus ‘Comet’) and snap bean (Phaseolus vulgaris ‘Strike’)) (Summner et al., 1999). The two
tested bahiagrass cultivars in the above-mentioned studies on peanuts and vegetables were
Pensacola and Tifton 9, respectively. Since Pensacola, Sand Mountain, and Tifton 9 were
characterized by an OTU assigned to a member of the Ceratobasidiaceae, our bahiagrass
cultivars may differ in their ability to suppress Rhizoctonia population in soils. Therefore,
it may be valuable to screen bahiagrass cultivars for disease suppression when used in
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sod-based crop rotations (i.e., 1 to 8 years of peanuts or vegetables rotated with 2 to 10
years of bahiagrass).

An OTU assigned to the widespread family Orbiliaceae was identified as an indicator
species of the cultivars Sand Mountain, TifQuik, Tifton 9, and UF-Riata (Table S4). Several
members of this family are carnivorous fungi which trap nematodes in soils (Pfister, 1997;
Rubner, 1996). The underlying mechanisms of biocontrol of nematodes by microorganisms
are well described (Li et al., 2015). Rotations of bahiagrass with peanuts, soybean (Glycine
max), or vegetables have shown the potential to increase nematode control (Rodriguez-
Kabana et al., 1988; Rodriguez-Kabana et al., 1989; Summner et al., 1999). However, there is
a lack of studies comparing the performance of different bahiagrass cultivars on nematode
control. Based on our molecular results, we speculate that bahiagrass cultivar screening
may improve nematode biocontrol.

CONCLUSIONS

We detected a few differences in community composition and diversity of soil bacteria
among bahiagrass cultivars, suggesting a moderate impact of cultivar choice on the soil
bacterial community. Further, cultivar choice affected the relative abundance of sequences
assigned to members of the nitrite-oxidizing bacterial genus Nitrospira with possible
implications for soil-N dynamics. In contrast, soil fungal composition and diversity was
not altered by the different cultivars. Several bacterial and fungal indicator species assigned
to either a single cultivar or a combination of cultivars were presumptive plant pathogens or
antagonists. In view of this, we suggest future work that explores the potential of bahiagrass
cultivars to control plant pathogens.
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